• 基于BP神經網絡的槍彈外觀缺陷識別與分類
    中國測試期刊

    史進偉, 郭朝勇, 劉紅寧
    (軍械工程學院基礎部,河北 石家莊 050003)
    摘  要:為實現槍彈外觀缺陷自動檢測,提出一種基于BP神經網絡的槍彈外觀缺陷自動識別與分類方法。首先針對槍彈外觀缺陷圖像特點,從形狀、顏色、紋理提取類別差異明顯的缺陷特征向量,作為神經網絡的輸入,以提高分類效果;然后通過經驗和實驗驗證確定神經網絡結構及參數,并分析傳統BP算法在槍彈外觀缺陷分類應用中的不足,通過優化BP算法以提高網絡分類性能。實驗表明:優化BP算法能夠有效分類槍彈外觀缺陷測試樣本,識別率達到92.1%,與傳統BP算法相比,提高了收斂速度,并表現出較好的準確性和魯棒性,能夠更好滿足槍彈外觀缺陷自動檢測要求。
    關鍵詞:槍彈外觀缺陷;特征提?。籅P神經網絡;識別與分類
    中圖分類號:TP391.4;TJ411;TJ06;TP274+.2        文獻標志碼:A       文章編號:1674-5124(2013)04-0026-05
    Identification and classification of bullet surface defect based on BP neural network
    SHI Jin-wei, GUO Chao-yong, LIU Hong-ning
    (Department of Basic Courses,Ordnance Engineering College,Shijiazhuang 050003,China)
    Abstract: In order to achieve automatic detection of bullet surface defect, a new method is proposed for automatically identifying and classifying the bullet surface defects on the basis of BP neural network. Firstly, according to the property of bullet surface defects, the distinct defect feature vector is extracted as the import of neural network from shape, color and texture. Secondly, the structure and parameter of neural network are ascertained by experience and experiment confirmation, the disadvantage of bullet surface defect classification by BP neural network is analyzed, and the classification capability of network is improved by optimized BP method. The experimental results show that the test stylebook of bullet surface defect can be classified by the optimized BP method effectively, and the discriminating rate can reach 92.1%. In the experiment of contrast with traditional BP method, the speed of convergence is improved, and the new method has a good ability of accuracy and robustness, can better satisfy the need of automatic detection of bullet surface defects.
    Key words: bullet surface defect; feature extraction; BP neural network; identification and classification
     
     
    網站首頁  |  關于我們  |  聯系我們  |  廣告服務  |  版權隱私  |  友情鏈接  |  站點導航
     
    日韩精品中文字幕无码一区| 国产精品午夜免费观看网站| 91亚洲国产成人久久精品| 伊人久久精品亚洲午夜| 西瓜精品国产自在现线| 国产精品亚洲а∨天堂2021 | 久久精品夜色噜噜亚洲A∨| 国产精品极品美女免费观看| 四虎精品影院在线观看视频| 国产92成人精品视频免费| 91成人精品视频| 日韩精品极品视频在线观看免费| 国精品无码一区二区三区在线| 精品一区二区三区免费观看 | 四虎成人精品国产永久免费无码 | 精品极品三级久久久久| 日韩精品成人无码专区免费 | 91精品国产高清久久久久久io| 亚洲国产精品专区在线观看 | 欲帝精品福利视频导航| 国产主播精品福利19禁vip| 国产精品无码素人福利免费| 国产精品自产拍2021在线观看| 成人99国产精品| 青青热久久国产久精品 | 国产精品成人久久久久| 99国产精品欧美一区二区三区| 国产精品无码AV天天爽播放器| 国产精品资源在线观看网站| 国产亚洲精品影视在线| 久久久久亚洲精品无码网址色欲| 亚洲国产精品成人午夜在线观看 | 久久久久久久国产精品电影| 日韩精品久久无码人妻中文字幕 | 久久久久久久91精品免费观看| 国产午夜亚洲精品国产| 欧洲精品免费一区二区三区| 麻豆人妻少妇精品无码专区| 国产三级精品三级在线观看专1| 国产亚洲午夜高清国产拍精品| 自拍偷在线精品自拍偷无码专区|