• 基于BP神經(jīng)網(wǎng)絡(luò)的槍彈外觀缺陷識(shí)別與分類
    中國(guó)測(cè)試期刊

    史進(jìn)偉, 郭朝勇, 劉紅寧
    (軍械工程學(xué)院基礎(chǔ)部,河北 石家莊 050003)
    摘  要:為實(shí)現(xiàn)槍彈外觀缺陷自動(dòng)檢測(cè),提出一種基于BP神經(jīng)網(wǎng)絡(luò)的槍彈外觀缺陷自動(dòng)識(shí)別與分類方法。首先針對(duì)槍彈外觀缺陷圖像特點(diǎn),從形狀、顏色、紋理提取類別差異明顯的缺陷特征向量,作為神經(jīng)網(wǎng)絡(luò)的輸入,以提高分類效果;然后通過(guò)經(jīng)驗(yàn)和實(shí)驗(yàn)驗(yàn)證確定神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)及參數(shù),并分析傳統(tǒng)BP算法在槍彈外觀缺陷分類應(yīng)用中的不足,通過(guò)優(yōu)化BP算法以提高網(wǎng)絡(luò)分類性能。實(shí)驗(yàn)表明:優(yōu)化BP算法能夠有效分類槍彈外觀缺陷測(cè)試樣本,識(shí)別率達(dá)到92.1%,與傳統(tǒng)BP算法相比,提高了收斂速度,并表現(xiàn)出較好的準(zhǔn)確性和魯棒性,能夠更好滿足槍彈外觀缺陷自動(dòng)檢測(cè)要求。
    關(guān)鍵詞:槍彈外觀缺陷;特征提取;BP神經(jīng)網(wǎng)絡(luò);識(shí)別與分類
    中圖分類號(hào):TP391.4;TJ411;TJ06;TP274+.2        文獻(xiàn)標(biāo)志碼:A       文章編號(hào):1674-5124(2013)04-0026-05
    Identification and classification of bullet surface defect based on BP neural network
    SHI Jin-wei, GUO Chao-yong, LIU Hong-ning
    (Department of Basic Courses,Ordnance Engineering College,Shijiazhuang 050003,China)
    Abstract: In order to achieve automatic detection of bullet surface defect, a new method is proposed for automatically identifying and classifying the bullet surface defects on the basis of BP neural network. Firstly, according to the property of bullet surface defects, the distinct defect feature vector is extracted as the import of neural network from shape, color and texture. Secondly, the structure and parameter of neural network are ascertained by experience and experiment confirmation, the disadvantage of bullet surface defect classification by BP neural network is analyzed, and the classification capability of network is improved by optimized BP method. The experimental results show that the test stylebook of bullet surface defect can be classified by the optimized BP method effectively, and the discriminating rate can reach 92.1%. In the experiment of contrast with traditional BP method, the speed of convergence is improved, and the new method has a good ability of accuracy and robustness, can better satisfy the need of automatic detection of bullet surface defects.
    Key words: bullet surface defect; feature extraction; BP neural network; identification and classification
     
     
    網(wǎng)站首頁(yè)  |  關(guān)于我們  |  聯(lián)系我們  |  廣告服務(wù)  |  版權(quán)隱私  |  友情鏈接  |  站點(diǎn)導(dǎo)航
     
    久久久国产精品一区二区18禁| 国产真实乱子伦精品视频| 国产精品毛片无码| 99精品人妻无码专区在线视频区| 国产午夜亚洲精品国产成人小说| 欧美激情国产精品视频一区二区| 麻豆精品成人免费国产片| 午夜国产精品久久影院| 精品国产乱码久久久久软件 | 91精品国产自产在线观看永久∴ | 亚洲国产美女精品久久久久∴| 蜜臀AV无码精品人妻色欲| 一本一道久久精品综合| 国产精品无码专区在线观看| 亚洲综合精品伊人久久| 色婷婷在线精品国自产拍| 久久精品亚洲乱码伦伦中文| 在线精品国精品国产不卡| 国产在线精品香蕉麻豆| 亚洲AV第一页国产精品| 北条麻妃久久99精品| 国产精品黄大片在线播放| 97久久超碰成人精品网站| 久久久精品国产sm调教网站| 国产亚洲精品岁国产微拍精品| 亚洲欧洲精品成人久久曰影片| 少妇人妻偷人精品视蜜桃| 99在线精品免费视频九九视 | 99久久国产热无码精品免费 | 国产成人精品免费久久久久| 国产精品人人做人人爽人人添| 最新国产午夜精品视频成人| 在线欧美精品一区二区三区| 精品人妻人人做人人爽| 国内精品九九久久久精品| 精品久久久无码中文字幕| 亚洲国产精品一区二区第一页免| 日韩精品国产一区| 国产成人精品日本亚洲语音| 亚洲日韩国产精品乱-久| 亚洲精品在线播放|