• 基于EMD和GA-SVM的超聲檢測(cè)缺陷信號(hào)識(shí)別
    中國(guó)測(cè)試李大中, 趙 杰
    摘  要:為提高金屬探傷時(shí)對(duì)缺陷的識(shí)別能力,提出一種遺傳優(yōu)化支持向量機(jī),結(jié)合經(jīng)驗(yàn)?zāi)B(tài)分解(EMD),對(duì)超聲波缺陷信號(hào)進(jìn)行自動(dòng)識(shí)別。首先進(jìn)行經(jīng)驗(yàn)?zāi)B(tài)分解法分解,提取出原始信號(hào)特征,構(gòu)建特征向量。鑒于常用的神經(jīng)網(wǎng)絡(luò)模型識(shí)別率不高及支持向量機(jī)參數(shù)難確定的問(wèn)題,利用遺傳算法優(yōu)化支持向量機(jī)模型(GA-SVM)的懲罰因子和核參數(shù),提高支持向量機(jī)建模精度。分別采用神經(jīng)網(wǎng)絡(luò)模型、SVM模型和GA-SVM模型對(duì)特征向量進(jìn)行訓(xùn)練與測(cè)試,GA-SVM模型識(shí)別率達(dá)到98.437 5%,優(yōu)于神經(jīng)網(wǎng)絡(luò)方法和未改進(jìn)的交叉驗(yàn)證法SVM模型。試驗(yàn)結(jié)果表明:遺傳算法能有效提高支持向量機(jī)的性能,在小樣本條件下能夠提高超聲缺陷的識(shí)別率。
    關(guān)鍵詞:缺陷信號(hào)識(shí)別;遺傳算法;支持向量機(jī);經(jīng)驗(yàn)?zāi)B(tài)分解
    文獻(xiàn)標(biāo)志碼:A       文章編號(hào):1674-5124(2016)01-0102-05
    Flaw signal identification in ultrasonic testing based on EMD and GA-SVM
    LI Dazhong, ZHAO Jie
    (Dept of Automation,North China Electric Power University,Baoding 071003,China)
    Abstract: In order to improve the flaw-recognizing ability in crack detection, a genetic algorithm optimization support vector machine (GA-SVM) has been proposed to identify automatically the ultrasonic defect signals in combination with the empirical model decomposition (EMD). First, the EMD is applied to extract the features of original ultrasonic signals and create feature vectors. Considering that common neural network models are low in recognition rate the SVM parameters are difficult to determine, the penalty factor and kernel parameter of the GA-SVM were employed to enhance the modeling precision of the GA-SVM. The feature vectors are trained and tested with the neural network model, SVM model and GA-SVM model. The recognition rate of the GA-SVM model is up to 98.437 5%, higher than the neural network model and the unimproved cross validation SVM model. Experimental results show that genetic algorithm can improve SVM performance. This machine can increase the recognition rate of ultrasonic defects in small samples.
    Keywords: flaw signal recognition; genetic algorithm; SVM; EMD
     
     
    網(wǎng)站首頁(yè)  |  關(guān)于我們  |  聯(lián)系我們  |  廣告服務(wù)  |  版權(quán)隱私  |  友情鏈接  |  站點(diǎn)導(dǎo)航
     
    久久久WWW免费人成精品| 日韩精品无码免费专区午夜 | 99视频30精品视频在线观看| 老司机性色福利精品视频| 久久久国产精品福利免费| 欧洲精品无码一区二区三区在线播放| 亚洲高清国产拍精品青青草原| 国产主播精品福利19禁vip| 国产麻豆精品精东影业av网站| 99国产精品欧美一区二区三区| 五月天精品视频在线观看| 国产在线观看麻豆91精品免费| 91精品日韩人妻无码久久不卡| 91精品国产自产在线观看高清 | 精品免费国产一区二区| 人人妻人人澡人人爽人人精品浪潮 | 一区二区三区久久精品| 精品一区精品二区| 亚洲国产精品一区二区九九| jazzjazz国产精品| 精品国精品国产自在久国产应用男| 国产成人精品久久综合 | 国产精品视频色视频| 九九精品在线视频| 久久精品国产福利国产琪琪| 精品久久久久久久中文字幕 | 亚洲综合精品香蕉久久网| 日韩精品在线观看| 久久老子午夜精品无码怎么打| 久久久久久九九精品久小说| 91麻豆精品国产片在线观看| 国产精品自拍一区| 蜜臀亚洲AV无码精品国产午夜.| 国产精品久久久久久福利| 网友偷拍日韩精品| 成人精品视频一区二区三区| 国产精品国产三级国产普通话| 亚洲精品综合一二三区在线| 国产成人精品男人的天堂538| 欧美精品久久久久a片一二三区 | 久久亚洲日韩精品一区二区三区 |