• 基于EMD和GA-SVM的超聲檢測(cè)缺陷信號(hào)識(shí)別
    中國(guó)測(cè)試李大中, 趙 杰
    摘  要:為提高金屬探傷時(shí)對(duì)缺陷的識(shí)別能力,提出一種遺傳優(yōu)化支持向量機(jī),結(jié)合經(jīng)驗(yàn)?zāi)B(tài)分解(EMD),對(duì)超聲波缺陷信號(hào)進(jìn)行自動(dòng)識(shí)別。首先進(jìn)行經(jīng)驗(yàn)?zāi)B(tài)分解法分解,提取出原始信號(hào)特征,構(gòu)建特征向量。鑒于常用的神經(jīng)網(wǎng)絡(luò)模型識(shí)別率不高及支持向量機(jī)參數(shù)難確定的問(wèn)題,利用遺傳算法優(yōu)化支持向量機(jī)模型(GA-SVM)的懲罰因子和核參數(shù),提高支持向量機(jī)建模精度。分別采用神經(jīng)網(wǎng)絡(luò)模型、SVM模型和GA-SVM模型對(duì)特征向量進(jìn)行訓(xùn)練與測(cè)試,GA-SVM模型識(shí)別率達(dá)到98.437 5%,優(yōu)于神經(jīng)網(wǎng)絡(luò)方法和未改進(jìn)的交叉驗(yàn)證法SVM模型。試驗(yàn)結(jié)果表明:遺傳算法能有效提高支持向量機(jī)的性能,在小樣本條件下能夠提高超聲缺陷的識(shí)別率。
    關(guān)鍵詞:缺陷信號(hào)識(shí)別;遺傳算法;支持向量機(jī);經(jīng)驗(yàn)?zāi)B(tài)分解
    文獻(xiàn)標(biāo)志碼:A       文章編號(hào):1674-5124(2016)01-0102-05
    Flaw signal identification in ultrasonic testing based on EMD and GA-SVM
    LI Dazhong, ZHAO Jie
    (Dept of Automation,North China Electric Power University,Baoding 071003,China)
    Abstract: In order to improve the flaw-recognizing ability in crack detection, a genetic algorithm optimization support vector machine (GA-SVM) has been proposed to identify automatically the ultrasonic defect signals in combination with the empirical model decomposition (EMD). First, the EMD is applied to extract the features of original ultrasonic signals and create feature vectors. Considering that common neural network models are low in recognition rate the SVM parameters are difficult to determine, the penalty factor and kernel parameter of the GA-SVM were employed to enhance the modeling precision of the GA-SVM. The feature vectors are trained and tested with the neural network model, SVM model and GA-SVM model. The recognition rate of the GA-SVM model is up to 98.437 5%, higher than the neural network model and the unimproved cross validation SVM model. Experimental results show that genetic algorithm can improve SVM performance. This machine can increase the recognition rate of ultrasonic defects in small samples.
    Keywords: flaw signal recognition; genetic algorithm; SVM; EMD
     
     
    網(wǎng)站首頁(yè)  |  關(guān)于我們  |  聯(lián)系我們  |  廣告服務(wù)  |  版權(quán)隱私  |  友情鏈接  |  站點(diǎn)導(dǎo)航
     
    国产精品WWW夜色视频| 999国内精品永久免费视频| 久久精品国产一区二区三区不卡 | 久久久久久久久久免免费精品 | 精品人妻大屁股白浆无码| 国产成人精品无码片区在线观看 | 538精品在线视频| 亚洲av永久无码精品国产精品| 亚洲电影日韩精品 | 久久99久久精品视频| 国产精品无码午夜福利| 中文字字幕在线精品乱码app| 精品综合一区二区三区| 免费精品国自产拍在线播放| 国产精品久久久久影院| 国产在线麻豆精品| 国产在线精品一区在线观看| 四库影院永久在线精品| 国产伦精品一区二区三区无广告 | 国产精品美女网站在线看| 精品久久久久久中文字幕一区 | 精品久久久久久综合日本| 国产亚洲精品a在线无码| 国内揄拍高清国内精品对白| 久久成人国产精品二三区| 国产精品vⅰdeoxxxx国产| 久久99蜜桃精品久久久久小说| 久久久国产精品一区二区18禁 | 国产精品亚洲一区二区三区| 国产精品盗摄一区二区在线| 国产成人精品无缓存在线播放| 精品一区中文字幕| 国产三级国产精品国产普男人| 久久国产成人精品国产成人亚洲| 最新精品露脸国产在线| 日韩精品一区二区三区大桥未久| 99精品在线视频| 久久久这里有精品| 国产精品免费视频播放器| 亚洲国产成人精品无码久久久久久综合| 国产精品高清2021在线|