• 基于EEMD-SVM的刀具磨損狀態研究
    中國測試江 雁, 傅 攀, 李曉暉
    摘  要:針對刀具磨損監測中信號的非平穩特性和小樣本建模中神經網絡容易陷入局部值的問題,提出基于多傳感器信號,運用集合經驗模態分解(ensemble empirical mode decomposition,EEMD)和支持向量機(support vector machine,SVM)相結合的算法,實現對刀具磨損多狀態的識別。首先對振動信號進行集合經驗模態分解,將其分解為若干個本征模態函數(intrinsic mode function,IMF)之和,然后計算得到三向切削力信號的均值和各本征模態函數分量的能量百分比值作為磨損狀態分類特征,最后運用支持向量機和Elman神經網絡對刀具在不同磨損狀態下的特征數據樣本進行訓練和識別。實驗結果證明該方法能很好地實現對刀具磨損狀態的識別,與Elman神經網絡相比,支持向量機具有更高的識別率,更適合小樣本情況下刀具磨損狀態的分類識別。
    關鍵詞:刀具磨損狀態識別;集合經驗模態分解;支持向量機;多傳感器
    文獻標志碼:A       文章編號:1674-5124(2016)01-0087-05
    Study of tool wear based on EEMD-SVM
    JIANG Yan, FU Pan, LI Xiaohui
    (School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
    Abstract: To make the signals steady in cutting-tool wear monitoring and prevent neural networks from easily falling into local minimum values during small sample modeling, we have proposed a new method to identify cutting-tool wear conditions based on multi-sensor signals, ensemble empirical mode decomposition(EEMD) and support vector machine(SVM). First, collected vibration signals are decomposed into a number of stationary intrinsic mode functions and further into the sum of multiple intrinsic mode functions. Second, these functions are used to calculate the mean value of three-direction cutting force signals and the energy percentage of each intrinsic mode function component and the calculation results were taken as the classification features of wear conditions. Next, the characteristic samples under different wear extents were trained and identified by SVM and Elman Neural Network. The experiment shows that this method can be used to determine the wear conditions of cutting tools and the SVM has a higher identification rate and more suitable for classified identification of cutting-tool wear conditions for small samples.
    Keywords: tool wear condition identification; ensemble empirical mode decomposition; support vector machine; multi-sensor
     
     
    網站首頁  |  關于我們  |  聯系我們  |  廣告服務  |  版權隱私  |  友情鏈接  |  站點導航
     
    久久国产精品一区| 国产亚洲精品线观看动态图| 亚洲综合精品香蕉久久网97| 国产亚洲女在线线精品| 久久国产精品99精品国产| 国产A级毛片久久久精品毛片| 亚洲一区二区三区精品视频| 成人无码精品1区2区3区免费看| 亚洲精品永久在线观看| 久久亚洲国产精品| 亚洲综合精品网站| 亚洲区日韩精品中文字幕| 久久国产乱子免费精品| 亚洲精品无码你懂的网站| 久久精品中文字幕大胸| 久久精品九九热无码免贵| 午夜精品一区二区三区在线视 | 精品国产91久久久久久久a | 无码人妻精品一区二区三区9厂| 亚洲国产精品国自产拍电影| 精品日本一区二区三区在线观看| 日本精品无码一区二区三区久久久 | 四虎国产精品永久地址入口| 91精品福利一区二区| 久久国产精品久久久久久久久久| 亚洲国产精品一区二区九九| 国产精品无码亚洲精品2021| 99精品视频免费观看| 亚洲精品成人在线| 日本精品一二三区| 99视频全部免费精品全部四虎 | www.精品国产| 国产午夜精品理论片久久影视| 国产精品乱码在线观看| 精品人妻人人做人人爽| 国产亚洲色婷婷久久99精品| 伊人久久无码精品中文字幕| 精品无码国产污污污免费| 精品国产乱码一区二区三区| 久久精品99视频| 日日噜噜噜噜夜夜爽亚洲精品|