• 基于EEMD-SVM的刀具磨損狀態研究
    中國測試江 雁, 傅 攀, 李曉暉
    摘  要:針對刀具磨損監測中信號的非平穩特性和小樣本建模中神經網絡容易陷入局部值的問題,提出基于多傳感器信號,運用集合經驗模態分解(ensemble empirical mode decomposition,EEMD)和支持向量機(support vector machine,SVM)相結合的算法,實現對刀具磨損多狀態的識別。首先對振動信號進行集合經驗模態分解,將其分解為若干個本征模態函數(intrinsic mode function,IMF)之和,然后計算得到三向切削力信號的均值和各本征模態函數分量的能量百分比值作為磨損狀態分類特征,最后運用支持向量機和Elman神經網絡對刀具在不同磨損狀態下的特征數據樣本進行訓練和識別。實驗結果證明該方法能很好地實現對刀具磨損狀態的識別,與Elman神經網絡相比,支持向量機具有更高的識別率,更適合小樣本情況下刀具磨損狀態的分類識別。
    關鍵詞:刀具磨損狀態識別;集合經驗模態分解;支持向量機;多傳感器
    文獻標志碼:A       文章編號:1674-5124(2016)01-0087-05
    Study of tool wear based on EEMD-SVM
    JIANG Yan, FU Pan, LI Xiaohui
    (School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
    Abstract: To make the signals steady in cutting-tool wear monitoring and prevent neural networks from easily falling into local minimum values during small sample modeling, we have proposed a new method to identify cutting-tool wear conditions based on multi-sensor signals, ensemble empirical mode decomposition(EEMD) and support vector machine(SVM). First, collected vibration signals are decomposed into a number of stationary intrinsic mode functions and further into the sum of multiple intrinsic mode functions. Second, these functions are used to calculate the mean value of three-direction cutting force signals and the energy percentage of each intrinsic mode function component and the calculation results were taken as the classification features of wear conditions. Next, the characteristic samples under different wear extents were trained and identified by SVM and Elman Neural Network. The experiment shows that this method can be used to determine the wear conditions of cutting tools and the SVM has a higher identification rate and more suitable for classified identification of cutting-tool wear conditions for small samples.
    Keywords: tool wear condition identification; ensemble empirical mode decomposition; support vector machine; multi-sensor
     
     
    網站首頁  |  關于我們  |  聯系我們  |  廣告服務  |  版權隱私  |  友情鏈接  |  站點導航
     
    国产一区二区精品久久91| 国产在线精品国自产拍影院| 亚洲av午夜福利精品一区| 国产成人午夜精品一区二区三区 | 精品国产日韩一区三区| 国产剧情国产精品一区| 日韩精品中文字幕在线| 91精品国产高清久久久久久国产嫩草| 一区二区三区四区精品| 99精品国产一区二区三区2021| 91精品国产高清91久久久久久| 日本精品视频一区二区| 精品成人乱色一区二区| 国99精品无码一区二区三区| 亚洲情侣偷拍精品| 精品国产柚木在线观看| 亚洲国产高清在线精品一区| 国产成人无码久久久精品一| 国产精品部在线观看| 无码专区国产精品视频| 精品丝袜国产自在线拍亚洲| 亚洲精品亚洲人成在线观看| 麻豆精品国产免费观看 | 久久成人影院精品777| 九九精品视频在线播放8| 国产精品亚洲一区二区在线观看 | 精品91自产拍在线观看| 国产大片91精品免费看3 | 精品在线一区二区三区| 久久99热久久99精品| 国产精品网站在线观看| 亚洲国产精品不卡在线电影| 国产69精品久久久久9999APGF| 夜夜爽一区二区三区精品| 精品久久国产视频| 国产精品香蕉在线一区| 亚洲精品午夜在线观看| 91亚洲精品视频| 久久精品中文闷骚内射| 久久99国产亚洲精品观看| 久久99国产精品久久99|