• 基于EEMD-SVM的刀具磨損狀態研究
    中國測試江 雁, 傅 攀, 李曉暉
    摘  要:針對刀具磨損監測中信號的非平穩特性和小樣本建模中神經網絡容易陷入局部值的問題,提出基于多傳感器信號,運用集合經驗模態分解(ensemble empirical mode decomposition,EEMD)和支持向量機(support vector machine,SVM)相結合的算法,實現對刀具磨損多狀態的識別。首先對振動信號進行集合經驗模態分解,將其分解為若干個本征模態函數(intrinsic mode function,IMF)之和,然后計算得到三向切削力信號的均值和各本征模態函數分量的能量百分比值作為磨損狀態分類特征,最后運用支持向量機和Elman神經網絡對刀具在不同磨損狀態下的特征數據樣本進行訓練和識別。實驗結果證明該方法能很好地實現對刀具磨損狀態的識別,與Elman神經網絡相比,支持向量機具有更高的識別率,更適合小樣本情況下刀具磨損狀態的分類識別。
    關鍵詞:刀具磨損狀態識別;集合經驗模態分解;支持向量機;多傳感器
    文獻標志碼:A       文章編號:1674-5124(2016)01-0087-05
    Study of tool wear based on EEMD-SVM
    JIANG Yan, FU Pan, LI Xiaohui
    (School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
    Abstract: To make the signals steady in cutting-tool wear monitoring and prevent neural networks from easily falling into local minimum values during small sample modeling, we have proposed a new method to identify cutting-tool wear conditions based on multi-sensor signals, ensemble empirical mode decomposition(EEMD) and support vector machine(SVM). First, collected vibration signals are decomposed into a number of stationary intrinsic mode functions and further into the sum of multiple intrinsic mode functions. Second, these functions are used to calculate the mean value of three-direction cutting force signals and the energy percentage of each intrinsic mode function component and the calculation results were taken as the classification features of wear conditions. Next, the characteristic samples under different wear extents were trained and identified by SVM and Elman Neural Network. The experiment shows that this method can be used to determine the wear conditions of cutting tools and the SVM has a higher identification rate and more suitable for classified identification of cutting-tool wear conditions for small samples.
    Keywords: tool wear condition identification; ensemble empirical mode decomposition; support vector machine; multi-sensor
     
     
    網站首頁  |  關于我們  |  聯系我們  |  廣告服務  |  版權隱私  |  友情鏈接  |  站點導航
     
    国产成人高清精品免费鸭子| 久久久久亚洲精品影视| 精品久久久无码人妻中文字幕| 拍国产真实乱人偷精品| 精品人伦一区二区三区潘金莲| 精品91自产拍在线观看二区| 亚洲国产成人超福利久久精品| 国产精品无码无卡无需播放器 | 亚洲AV永久精品爱情岛论坛| 日韩精品久久一区二区三区| 99久热只有精品视频免费观看17| 人妻老妇乱子伦精品无码专区| 久久亚洲精品国产亚洲老地址 | 久久精品国产亚洲AV无码娇色 | 午夜精品免费在线观看| 亚洲国产精品国产自在在线 | 久久久综合九色合综国产精品| 国产一区二区精品在线观看| 99久久er热在这里只有精品99| 2022精品天堂在线视频| 国语自产精品视频在线完整版 | 99国产精品一区二区| 国产精品综合视频| 最新露脸国产精品视频| 国产成人精品白浆久久69| 久久99精品国产麻豆婷婷| 国产精品国产午夜免费福利看| 2018国产精华国产精品| 日韩精品在线免费观看| 国产精品JIZZ在线观看老狼| 国内精品视频一区二区八戒| 久久精品国产免费观看| 欧产日产国产精品精品| 国产精品亚洲аv无码播放| 久久国产精品免费一区二区三区| 国产亚洲精品美女久久久久| 久久久无码精品午夜| 亚洲AV无码一区二区三区久久精品| 精品一区二区三区免费毛片爱| 久久国产精品免费网站| 日本精品不卡视频|